Metamath Proof Explorer


Theorem fvresex

Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis fvresex.1 A V
Assertion fvresex y | x y = F A x V

Proof

Step Hyp Ref Expression
1 fvresex.1 A V
2 ssv A V
3 resmpt A V z V F z A = z A F z
4 2 3 ax-mp z V F z A = z A F z
5 4 fveq1i z V F z A x = z A F z x
6 fveq2 z = x F z = F x
7 eqid z V F z = z V F z
8 fvex F x V
9 6 7 8 fvmpt x V z V F z x = F x
10 9 elv z V F z x = F x
11 fveqres z V F z x = F x z V F z A x = F A x
12 10 11 ax-mp z V F z A x = F A x
13 5 12 eqtr3i z A F z x = F A x
14 13 eqeq2i y = z A F z x y = F A x
15 14 exbii x y = z A F z x x y = F A x
16 15 abbii y | x y = z A F z x = y | x y = F A x
17 1 mptex z A F z V
18 17 fvclex y | x y = z A F z x V
19 16 18 eqeltrri y | x y = F A x V