Metamath Proof Explorer


Theorem fvsnun1

Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsnun.1 φ A V
fvsnun.2 φ B W
fvsnun.3 G = A B F C A
Assertion fvsnun1 φ G A = B

Proof

Step Hyp Ref Expression
1 fvsnun.1 φ A V
2 fvsnun.2 φ B W
3 fvsnun.3 G = A B F C A
4 3 reseq1i G A = A B F C A A
5 resundir A B F C A A = A B A F C A A
6 disjdifr C A A =
7 resdisj C A A = F C A A =
8 6 7 ax-mp F C A A =
9 8 uneq2i A B A F C A A = A B A
10 un0 A B A = A B A
11 9 10 eqtri A B A F C A A = A B A
12 5 11 eqtri A B F C A A = A B A
13 4 12 eqtri G A = A B A
14 13 fveq1i G A A = A B A A
15 snidg A V A A
16 1 15 syl φ A A
17 16 fvresd φ G A A = G A
18 16 fvresd φ A B A A = A B A
19 fvsng A V B W A B A = B
20 1 2 19 syl2anc φ A B A = B
21 18 20 eqtrd φ A B A A = B
22 14 17 21 3eqtr3a φ G A = B