Metamath Proof Explorer


Theorem fvsnun2

Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsnun.1 φ A V
fvsnun.2 φ B W
fvsnun.3 G = A B F C A
fvsnun2.4 φ D C A
Assertion fvsnun2 φ G D = F D

Proof

Step Hyp Ref Expression
1 fvsnun.1 φ A V
2 fvsnun.2 φ B W
3 fvsnun.3 G = A B F C A
4 fvsnun2.4 φ D C A
5 3 reseq1i G C A = A B F C A C A
6 5 a1i φ G C A = A B F C A C A
7 resundir A B F C A C A = A B C A F C A C A
8 7 a1i φ A B F C A C A = A B C A F C A C A
9 disjdif A C A =
10 fnsng A V B W A B Fn A
11 1 2 10 syl2anc φ A B Fn A
12 fnresdisj A B Fn A A C A = A B C A =
13 11 12 syl φ A C A = A B C A =
14 9 13 mpbii φ A B C A =
15 residm F C A C A = F C A
16 15 a1i φ F C A C A = F C A
17 14 16 uneq12d φ A B C A F C A C A = F C A
18 uncom F C A = F C A
19 18 a1i φ F C A = F C A
20 un0 F C A = F C A
21 20 a1i φ F C A = F C A
22 17 19 21 3eqtrd φ A B C A F C A C A = F C A
23 6 8 22 3eqtrd φ G C A = F C A
24 23 fveq1d φ G C A D = F C A D
25 4 fvresd φ G C A D = G D
26 4 fvresd φ F C A D = F D
27 24 25 26 3eqtr3d φ G D = F D