Metamath Proof Explorer


Theorem fvtp1g

Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fvtp1g A V D W A B A C A D B E C F A = D

Proof

Step Hyp Ref Expression
1 df-tp A D B E C F = A D B E C F
2 1 fveq1i A D B E C F A = A D B E C F A
3 necom A C C A
4 fvunsn C A A D B E C F A = A D B E A
5 3 4 sylbi A C A D B E C F A = A D B E A
6 5 ad2antll A V D W A B A C A D B E C F A = A D B E A
7 fvpr1g A V D W A B A D B E A = D
8 7 3expa A V D W A B A D B E A = D
9 8 adantrr A V D W A B A C A D B E A = D
10 6 9 eqtrd A V D W A B A C A D B E C F A = D
11 2 10 eqtrid A V D W A B A C A D B E C F A = D