Metamath Proof Explorer


Theorem fvtp2g

Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fvtp2g B V E W A B B C A D B E C F B = E

Proof

Step Hyp Ref Expression
1 tprot A D B E C F = B E C F A D
2 1 fveq1i A D B E C F B = B E C F A D B
3 necom A B B A
4 fvtp1g B V E W B C B A B E C F A D B = E
5 4 expcom B C B A B V E W B E C F A D B = E
6 5 ancoms B A B C B V E W B E C F A D B = E
7 3 6 sylanb A B B C B V E W B E C F A D B = E
8 7 impcom B V E W A B B C B E C F A D B = E
9 2 8 eqtrid B V E W A B B C A D B E C F B = E