Metamath Proof Explorer


Theorem fvtp3

Description: The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses fvtp3.1 C V
fvtp3.4 F V
Assertion fvtp3 A C B C A D B E C F C = F

Proof

Step Hyp Ref Expression
1 fvtp3.1 C V
2 fvtp3.4 F V
3 tprot A D B E C F = B E C F A D
4 3 fveq1i A D B E C F C = B E C F A D C
5 necom A C C A
6 1 2 fvtp2 B C C A B E C F A D C = F
7 5 6 sylan2b B C A C B E C F A D C = F
8 7 ancoms A C B C B E C F A D C = F
9 4 8 eqtrid A C B C A D B E C F C = F