Metamath Proof Explorer


Theorem fvtp3g

Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fvtp3g C V F W A C B C A D B E C F C = F

Proof

Step Hyp Ref Expression
1 tprot A D B E C F = B E C F A D
2 1 fveq1i A D B E C F C = B E C F A D C
3 necom A C C A
4 fvtp2g C V F W B C C A B E C F A D C = F
5 4 expcom B C C A C V F W B E C F A D C = F
6 3 5 sylan2b B C A C C V F W B E C F A D C = F
7 6 ancoms A C B C C V F W B E C F A D C = F
8 7 impcom C V F W A C B C B E C F A D C = F
9 2 8 eqtrid C V F W A C B C A D B E C F C = F