Metamath Proof Explorer


Theorem fvun

Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011)

Ref Expression
Assertion fvun Fun F Fun G dom F dom G = F G A = F A G A

Proof

Step Hyp Ref Expression
1 funun Fun F Fun G dom F dom G = Fun F G
2 funfv Fun F G F G A = F G A
3 1 2 syl Fun F Fun G dom F dom G = F G A = F G A
4 imaundir F G A = F A G A
5 4 a1i Fun F Fun G dom F dom G = F G A = F A G A
6 5 unieqd Fun F Fun G dom F dom G = F G A = F A G A
7 uniun F A G A = F A G A
8 funfv Fun F F A = F A
9 8 eqcomd Fun F F A = F A
10 funfv Fun G G A = G A
11 10 eqcomd Fun G G A = G A
12 9 11 anim12i Fun F Fun G F A = F A G A = G A
13 12 adantr Fun F Fun G dom F dom G = F A = F A G A = G A
14 uneq12 F A = F A G A = G A F A G A = F A G A
15 13 14 syl Fun F Fun G dom F dom G = F A G A = F A G A
16 7 15 eqtrid Fun F Fun G dom F dom G = F A G A = F A G A
17 3 6 16 3eqtrd Fun F Fun G dom F dom G = F G A = F A G A