Metamath Proof Explorer


Theorem fvunsn

Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion fvunsn B D A B C D = A D

Proof

Step Hyp Ref Expression
1 resundir A B C D = A D B C D
2 nelsn B D ¬ B D
3 ressnop0 ¬ B D B C D =
4 2 3 syl B D B C D =
5 4 uneq2d B D A D B C D = A D
6 un0 A D = A D
7 5 6 eqtrdi B D A D B C D = A D
8 1 7 eqtrid B D A B C D = A D
9 8 fveq1d B D A B C D D = A D D
10 fvressn D V A B C D D = A B C D
11 fvprc ¬ D V A B C D D =
12 fvprc ¬ D V A B C D =
13 11 12 eqtr4d ¬ D V A B C D D = A B C D
14 10 13 pm2.61i A B C D D = A B C D
15 fvressn D V A D D = A D
16 fvprc ¬ D V A D D =
17 fvprc ¬ D V A D =
18 16 17 eqtr4d ¬ D V A D D = A D
19 15 18 pm2.61i A D D = A D
20 9 14 19 3eqtr3g B D A B C D = A D