Database
REAL AND COMPLEX NUMBERS
Order sets
Half-open integer ranges
fz01pr
Next ⟩
fzo0to3tp
Metamath Proof Explorer
Ascii
Unicode
Theorem
fz01pr
Description:
An integer range between 0 and 1 is a pair.
(Contributed by
AV
, 11-Sep-2025)
Ref
Expression
Assertion
fz01pr
⊢
0
…
1
=
0
1
Proof
Step
Hyp
Ref
Expression
1
1e0p1
⊢
1
=
0
+
1
2
1
oveq2i
⊢
0
…
1
=
0
…
0
+
1
3
0z
⊢
0
∈
ℤ
4
fzpr
⊢
0
∈
ℤ
→
0
…
0
+
1
=
0
0
+
1
5
3
4
ax-mp
⊢
0
…
0
+
1
=
0
0
+
1
6
0p1e1
⊢
0
+
1
=
1
7
6
preq2i
⊢
0
0
+
1
=
0
1
8
2
5
7
3eqtri
⊢
0
…
1
=
0
1