Metamath Proof Explorer


Theorem fz0add1fz1

Description: Translate membership in a 0-based half-open integer range into membership in a 1-based finite sequence of integers. (Contributed by Alexander van der Vekens, 23-Nov-2017)

Ref Expression
Assertion fz0add1fz1 N 0 X 0 ..^ N X + 1 1 N

Proof

Step Hyp Ref Expression
1 1z 1
2 fzoaddel X 0 ..^ N 1 X + 1 0 + 1 ..^ N + 1
3 1 2 mpan2 X 0 ..^ N X + 1 0 + 1 ..^ N + 1
4 3 adantl N 0 X 0 ..^ N X + 1 0 + 1 ..^ N + 1
5 0p1e1 0 + 1 = 1
6 5 oveq1i 0 + 1 ..^ N + 1 = 1 ..^ N + 1
7 nn0z N 0 N
8 fzval3 N 1 N = 1 ..^ N + 1
9 8 eqcomd N 1 ..^ N + 1 = 1 N
10 7 9 syl N 0 1 ..^ N + 1 = 1 N
11 6 10 eqtrid N 0 0 + 1 ..^ N + 1 = 1 N
12 11 eleq2d N 0 X + 1 0 + 1 ..^ N + 1 X + 1 1 N
13 12 adantr N 0 X 0 ..^ N X + 1 0 + 1 ..^ N + 1 X + 1 1 N
14 4 13 mpbid N 0 X 0 ..^ N X + 1 1 N