Step |
Hyp |
Ref |
Expression |
1 |
|
fz0fzelfz0 |
|
2 |
|
elfzle1 |
|
3 |
2
|
adantl |
|
4 |
3
|
adantl |
|
5 |
|
elfznn0 |
|
6 |
5
|
adantr |
|
7 |
|
elfznn0 |
|
8 |
|
nn0sub |
|
9 |
6 7 8
|
syl2anr |
|
10 |
4 9
|
mpbid |
|
11 |
|
elfz3nn0 |
|
12 |
11
|
adantr |
|
13 |
|
elfz2nn0 |
|
14 |
|
elfz2 |
|
15 |
|
zsubcl |
|
16 |
15
|
zred |
|
17 |
16
|
ancoms |
|
18 |
17
|
3adant2 |
|
19 |
|
zre |
|
20 |
19
|
3ad2ant3 |
|
21 |
|
zre |
|
22 |
21
|
3ad2ant2 |
|
23 |
18 20 22
|
3jca |
|
24 |
23
|
adantr |
|
25 |
24
|
adantr |
|
26 |
|
nn0ge0 |
|
27 |
26
|
adantl |
|
28 |
|
nn0re |
|
29 |
|
subge02 |
|
30 |
20 28 29
|
syl2an |
|
31 |
27 30
|
mpbid |
|
32 |
31
|
anim1i |
|
33 |
|
letr |
|
34 |
25 32 33
|
sylc |
|
35 |
34
|
exp31 |
|
36 |
35
|
a1i |
|
37 |
36
|
com14 |
|
38 |
37
|
adantl |
|
39 |
38
|
impcom |
|
40 |
14 39
|
sylbi |
|
41 |
40
|
com13 |
|
42 |
41
|
impcom |
|
43 |
42
|
3adant3 |
|
44 |
13 43
|
sylbi |
|
45 |
44
|
imp |
|
46 |
45
|
adantl |
|
47 |
10 12 46
|
3jca |
|
48 |
1 47
|
mpancom |
|
49 |
|
elfz2nn0 |
|
50 |
48 49
|
sylibr |
|