Metamath Proof Explorer


Theorem fz0fzdiffz0

Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018)

Ref Expression
Assertion fz0fzdiffz0 M 0 N K M N K M 0 N

Proof

Step Hyp Ref Expression
1 fz0fzelfz0 M 0 N K M N K 0 N
2 elfzle1 K M N M K
3 2 adantl M 0 N K M N M K
4 3 adantl K 0 N M 0 N K M N M K
5 elfznn0 M 0 N M 0
6 5 adantr M 0 N K M N M 0
7 elfznn0 K 0 N K 0
8 nn0sub M 0 K 0 M K K M 0
9 6 7 8 syl2anr K 0 N M 0 N K M N M K K M 0
10 4 9 mpbid K 0 N M 0 N K M N K M 0
11 elfz3nn0 K 0 N N 0
12 11 adantr K 0 N M 0 N K M N N 0
13 elfz2nn0 M 0 N M 0 N 0 M N
14 elfz2 K M N M N K M K K N
15 zsubcl K M K M
16 15 zred K M K M
17 16 ancoms M K K M
18 17 3adant2 M N K K M
19 zre K K
20 19 3ad2ant3 M N K K
21 zre N N
22 21 3ad2ant2 M N K N
23 18 20 22 3jca M N K K M K N
24 23 adantr M N K M 0 K M K N
25 24 adantr M N K M 0 K N K M K N
26 nn0ge0 M 0 0 M
27 26 adantl M N K M 0 0 M
28 nn0re M 0 M
29 subge02 K M 0 M K M K
30 20 28 29 syl2an M N K M 0 0 M K M K
31 27 30 mpbid M N K M 0 K M K
32 31 anim1i M N K M 0 K N K M K K N
33 letr K M K N K M K K N K M N
34 25 32 33 sylc M N K M 0 K N K M N
35 34 exp31 M N K M 0 K N K M N
36 35 a1i N 0 M N K M 0 K N K M N
37 36 com14 K N M N K M 0 N 0 K M N
38 37 adantl M K K N M N K M 0 N 0 K M N
39 38 impcom M N K M K K N M 0 N 0 K M N
40 14 39 sylbi K M N M 0 N 0 K M N
41 40 com13 N 0 M 0 K M N K M N
42 41 impcom M 0 N 0 K M N K M N
43 42 3adant3 M 0 N 0 M N K M N K M N
44 13 43 sylbi M 0 N K M N K M N
45 44 imp M 0 N K M N K M N
46 45 adantl K 0 N M 0 N K M N K M N
47 10 12 46 3jca K 0 N M 0 N K M N K M 0 N 0 K M N
48 1 47 mpancom M 0 N K M N K M 0 N 0 K M N
49 elfz2nn0 K M 0 N K M 0 N 0 K M N
50 48 49 sylibr M 0 N K M N K M 0 N