Metamath Proof Explorer


Theorem fz0to3un2pr

Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021)

Ref Expression
Assertion fz0to3un2pr 0 3 = 0 1 2 3

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 3nn0 3 0
3 1le3 1 3
4 elfz2nn0 1 0 3 1 0 3 0 1 3
5 1 2 3 4 mpbir3an 1 0 3
6 fzsplit 1 0 3 0 3 = 0 1 1 + 1 3
7 5 6 ax-mp 0 3 = 0 1 1 + 1 3
8 1e0p1 1 = 0 + 1
9 8 oveq2i 0 1 = 0 0 + 1
10 0z 0
11 fzpr 0 0 0 + 1 = 0 0 + 1
12 10 11 ax-mp 0 0 + 1 = 0 0 + 1
13 0p1e1 0 + 1 = 1
14 13 preq2i 0 0 + 1 = 0 1
15 9 12 14 3eqtri 0 1 = 0 1
16 1p1e2 1 + 1 = 2
17 df-3 3 = 2 + 1
18 16 17 oveq12i 1 + 1 3 = 2 2 + 1
19 2z 2
20 fzpr 2 2 2 + 1 = 2 2 + 1
21 19 20 ax-mp 2 2 + 1 = 2 2 + 1
22 2p1e3 2 + 1 = 3
23 22 preq2i 2 2 + 1 = 2 3
24 18 21 23 3eqtri 1 + 1 3 = 2 3
25 15 24 uneq12i 0 1 1 + 1 3 = 0 1 2 3
26 7 25 eqtri 0 3 = 0 1 2 3