Step |
Hyp |
Ref |
Expression |
1 |
|
df-3 |
|
2 |
|
2cn |
|
3 |
2
|
addid2i |
|
4 |
3
|
eqcomi |
|
5 |
4
|
oveq1i |
|
6 |
1 5
|
eqtri |
|
7 |
|
3z |
|
8 |
|
0re |
|
9 |
|
3re |
|
10 |
|
3pos |
|
11 |
8 9 10
|
ltleii |
|
12 |
|
0z |
|
13 |
12
|
eluz1i |
|
14 |
7 11 13
|
mpbir2an |
|
15 |
6 14
|
eqeltrri |
|
16 |
|
4z |
|
17 |
|
2re |
|
18 |
|
4re |
|
19 |
|
2lt4 |
|
20 |
17 18 19
|
ltleii |
|
21 |
|
2z |
|
22 |
21
|
eluz1i |
|
23 |
16 20 22
|
mpbir2an |
|
24 |
4
|
fveq2i |
|
25 |
23 24
|
eleqtri |
|
26 |
|
fzsplit2 |
|
27 |
15 25 26
|
mp2an |
|
28 |
|
fztp |
|
29 |
12 28
|
ax-mp |
|
30 |
|
ax-1cn |
|
31 |
|
eqidd |
|
32 |
|
addid2 |
|
33 |
3
|
a1i |
|
34 |
31 32 33
|
tpeq123d |
|
35 |
30 34
|
ax-mp |
|
36 |
29 35
|
eqtri |
|
37 |
3
|
a1i |
|
38 |
37
|
oveq1d |
|
39 |
38 1
|
eqtr4di |
|
40 |
39
|
oveq1d |
|
41 |
|
eqid |
|
42 |
|
df-4 |
|
43 |
41 42
|
pm3.2i |
|
44 |
43
|
a1i |
|
45 |
|
3lt4 |
|
46 |
9 18 45
|
ltleii |
|
47 |
7
|
eluz1i |
|
48 |
16 46 47
|
mpbir2an |
|
49 |
|
fzopth |
|
50 |
48 49
|
ax-mp |
|
51 |
44 50
|
sylibr |
|
52 |
|
fzpr |
|
53 |
51 52
|
eqtrd |
|
54 |
42
|
eqcomi |
|
55 |
54
|
preq2i |
|
56 |
53 55
|
eqtrdi |
|
57 |
40 56
|
eqtrd |
|
58 |
7 57
|
ax-mp |
|
59 |
36 58
|
uneq12i |
|
60 |
27 59
|
eqtri |
|