Metamath Proof Explorer


Theorem fz0to4untppr

Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017)

Ref Expression
Assertion fz0to4untppr 0 4 = 0 1 2 3 4

Proof

Step Hyp Ref Expression
1 df-3 3 = 2 + 1
2 2cn 2
3 2 addid2i 0 + 2 = 2
4 3 eqcomi 2 = 0 + 2
5 4 oveq1i 2 + 1 = 0 + 2 + 1
6 1 5 eqtri 3 = 0 + 2 + 1
7 3z 3
8 0re 0
9 3re 3
10 3pos 0 < 3
11 8 9 10 ltleii 0 3
12 0z 0
13 12 eluz1i 3 0 3 0 3
14 7 11 13 mpbir2an 3 0
15 6 14 eqeltrri 0 + 2 + 1 0
16 4z 4
17 2re 2
18 4re 4
19 2lt4 2 < 4
20 17 18 19 ltleii 2 4
21 2z 2
22 21 eluz1i 4 2 4 2 4
23 16 20 22 mpbir2an 4 2
24 4 fveq2i 2 = 0 + 2
25 23 24 eleqtri 4 0 + 2
26 fzsplit2 0 + 2 + 1 0 4 0 + 2 0 4 = 0 0 + 2 0 + 2 + 1 4
27 15 25 26 mp2an 0 4 = 0 0 + 2 0 + 2 + 1 4
28 fztp 0 0 0 + 2 = 0 0 + 1 0 + 2
29 12 28 ax-mp 0 0 + 2 = 0 0 + 1 0 + 2
30 ax-1cn 1
31 eqidd 1 0 = 0
32 addid2 1 0 + 1 = 1
33 3 a1i 1 0 + 2 = 2
34 31 32 33 tpeq123d 1 0 0 + 1 0 + 2 = 0 1 2
35 30 34 ax-mp 0 0 + 1 0 + 2 = 0 1 2
36 29 35 eqtri 0 0 + 2 = 0 1 2
37 3 a1i 3 0 + 2 = 2
38 37 oveq1d 3 0 + 2 + 1 = 2 + 1
39 38 1 eqtr4di 3 0 + 2 + 1 = 3
40 39 oveq1d 3 0 + 2 + 1 4 = 3 4
41 eqid 3 = 3
42 df-4 4 = 3 + 1
43 41 42 pm3.2i 3 = 3 4 = 3 + 1
44 43 a1i 3 3 = 3 4 = 3 + 1
45 3lt4 3 < 4
46 9 18 45 ltleii 3 4
47 7 eluz1i 4 3 4 3 4
48 16 46 47 mpbir2an 4 3
49 fzopth 4 3 3 4 = 3 3 + 1 3 = 3 4 = 3 + 1
50 48 49 ax-mp 3 4 = 3 3 + 1 3 = 3 4 = 3 + 1
51 44 50 sylibr 3 3 4 = 3 3 + 1
52 fzpr 3 3 3 + 1 = 3 3 + 1
53 51 52 eqtrd 3 3 4 = 3 3 + 1
54 42 eqcomi 3 + 1 = 4
55 54 preq2i 3 3 + 1 = 3 4
56 53 55 eqtrdi 3 3 4 = 3 4
57 40 56 eqtrd 3 0 + 2 + 1 4 = 3 4
58 7 57 ax-mp 0 + 2 + 1 4 = 3 4
59 36 58 uneq12i 0 0 + 2 0 + 2 + 1 4 = 0 1 2 3 4
60 27 59 eqtri 0 4 = 0 1 2 3 4