Metamath Proof Explorer


Theorem fz1f1o

Description: A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014)

Ref Expression
Assertion fz1f1o A Fin A = A f f : 1 A 1-1 onto A

Proof

Step Hyp Ref Expression
1 hashcl A Fin A 0
2 elnn0 A 0 A A = 0
3 1 2 sylib A Fin A A = 0
4 3 orcomd A Fin A = 0 A
5 hasheq0 A Fin A = 0 A =
6 isfinite4 A Fin 1 A A
7 bren 1 A A f f : 1 A 1-1 onto A
8 6 7 sylbb A Fin f f : 1 A 1-1 onto A
9 8 biantrud A Fin A A f f : 1 A 1-1 onto A
10 5 9 orbi12d A Fin A = 0 A A = A f f : 1 A 1-1 onto A
11 4 10 mpbid A Fin A = A f f : 1 A 1-1 onto A