Metamath Proof Explorer


Theorem fz1f1o

Description: A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014)

Ref Expression
Assertion fz1f1o AFinA=Aff:1A1-1 ontoA

Proof

Step Hyp Ref Expression
1 hashcl AFinA0
2 elnn0 A0AA=0
3 1 2 sylib AFinAA=0
4 3 orcomd AFinA=0A
5 hasheq0 AFinA=0A=
6 isfinite4 AFin1AA
7 bren 1AAff:1A1-1 ontoA
8 6 7 sylbb AFinff:1A1-1 ontoA
9 8 biantrud AFinAAff:1A1-1 ontoA
10 5 9 orbi12d AFinA=0AA=Aff:1A1-1 ontoA
11 4 10 mpbid AFinA=Aff:1A1-1 ontoA