Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite sums
fz1f1o
Next ⟩
sumrblem
Metamath Proof Explorer
Ascii
Unicode
Theorem
fz1f1o
Description:
A lemma for working with finite sums.
(Contributed by
Mario Carneiro
, 22-Apr-2014)
Ref
Expression
Assertion
fz1f1o
⊢
A
∈
Fin
→
A
=
∅
∨
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
Proof
Step
Hyp
Ref
Expression
1
hashcl
⊢
A
∈
Fin
→
A
∈
ℕ
0
2
elnn0
⊢
A
∈
ℕ
0
↔
A
∈
ℕ
∨
A
=
0
3
1
2
sylib
⊢
A
∈
Fin
→
A
∈
ℕ
∨
A
=
0
4
3
orcomd
⊢
A
∈
Fin
→
A
=
0
∨
A
∈
ℕ
5
hasheq0
⊢
A
∈
Fin
→
A
=
0
↔
A
=
∅
6
isfinite4
⊢
A
∈
Fin
↔
1
…
A
≈
A
7
bren
⊢
1
…
A
≈
A
↔
∃
f
f
:
1
…
A
⟶
1-1 onto
A
8
6
7
sylbb
⊢
A
∈
Fin
→
∃
f
f
:
1
…
A
⟶
1-1 onto
A
9
8
biantrud
⊢
A
∈
Fin
→
A
∈
ℕ
↔
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
10
5
9
orbi12d
⊢
A
∈
Fin
→
A
=
0
∨
A
∈
ℕ
↔
A
=
∅
∨
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
11
4
10
mpbid
⊢
A
∈
Fin
→
A
=
∅
∨
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A