Metamath Proof Explorer


Theorem fz1iso

Description: Any finite ordered set has an order isomorphism to a one-based finite sequence. (Contributed by Mario Carneiro, 2-Apr-2014)

Ref Expression
Assertion fz1iso R Or A A Fin f f Isom < , R 1 A A

Proof

Step Hyp Ref Expression
1 eqid rec n V n + 1 1 ω = rec n V n + 1 1 ω
2 eqid < -1 A + 1 = < -1 A + 1
3 eqid ω rec n V n + 1 1 ω -1 A + 1 = ω rec n V n + 1 1 ω -1 A + 1
4 eqid OrdIso R A = OrdIso R A
5 1 2 3 4 fz1isolem R Or A A Fin f f Isom < , R 1 A A