Metamath Proof Explorer


Theorem fz1sbc

Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005)

Ref Expression
Assertion fz1sbc N k N N φ [˙N / k]˙ φ

Proof

Step Hyp Ref Expression
1 sbc6g N [˙N / k]˙ φ k k = N φ
2 df-ral k N N φ k k N N φ
3 elfz1eq k N N k = N
4 elfz3 N N N N
5 eleq1 k = N k N N N N N
6 4 5 syl5ibrcom N k = N k N N
7 3 6 impbid2 N k N N k = N
8 7 imbi1d N k N N φ k = N φ
9 8 albidv N k k N N φ k k = N φ
10 2 9 bitr2id N k k = N φ k N N φ
11 1 10 bitr2d N k N N φ [˙N / k]˙ φ