Metamath Proof Explorer


Theorem fz1ssfz0

Description: Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion fz1ssfz0 1 N 0 N

Proof

Step Hyp Ref Expression
1 1e0p1 1 = 0 + 1
2 1 oveq1i 1 N = 0 + 1 N
3 0z 0
4 fzp1ss 0 0 + 1 N 0 N
5 3 4 ax-mp 0 + 1 N 0 N
6 2 5 eqsstri 1 N 0 N