Metamath Proof Explorer


Theorem fzadd2

Description: Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion fzadd2 M N O P J M N K O P J + K M + O N + P

Proof

Step Hyp Ref Expression
1 elfz1 M N J M N J M J J N
2 elfz1 O P K O P K O K K P
3 1 2 bi2anan9 M N O P J M N K O P J M J J N K O K K P
4 an6 J M J J N K O K K P J K M J O K J N K P
5 zre M M
6 zre O O
7 5 6 anim12i M O M O
8 zre J J
9 zre K K
10 8 9 anim12i J K J K
11 le2add M O J K M J O K M + O J + K
12 7 10 11 syl2an M O J K M J O K M + O J + K
13 12 impr M O J K M J O K M + O J + K
14 13 3adantr3 M O J K M J O K J N K P M + O J + K
15 14 adantlr M O N P J K M J O K J N K P M + O J + K
16 zre N N
17 zre P P
18 16 17 anim12i N P N P
19 le2add J K N P J N K P J + K N + P
20 10 18 19 syl2anr N P J K J N K P J + K N + P
21 20 impr N P J K J N K P J + K N + P
22 21 3adantr2 N P J K M J O K J N K P J + K N + P
23 22 adantll M O N P J K M J O K J N K P J + K N + P
24 zaddcl J K J + K
25 zaddcl M O M + O
26 zaddcl N P N + P
27 elfz J + K M + O N + P J + K M + O N + P M + O J + K J + K N + P
28 24 25 26 27 syl3an J K M O N P J + K M + O N + P M + O J + K J + K N + P
29 28 3expb J K M O N P J + K M + O N + P M + O J + K J + K N + P
30 29 ancoms M O N P J K J + K M + O N + P M + O J + K J + K N + P
31 30 3ad2antr1 M O N P J K M J O K J N K P J + K M + O N + P M + O J + K J + K N + P
32 15 23 31 mpbir2and M O N P J K M J O K J N K P J + K M + O N + P
33 32 ex M O N P J K M J O K J N K P J + K M + O N + P
34 33 an4s M N O P J K M J O K J N K P J + K M + O N + P
35 4 34 syl5bi M N O P J M J J N K O K K P J + K M + O N + P
36 3 35 sylbid M N O P J M N K O P J + K M + O N + P