Metamath Proof Explorer


Theorem fzaddel

Description: Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005)

Ref Expression
Assertion fzaddel M N J K J M N J + K M + K N + K

Proof

Step Hyp Ref Expression
1 simpl J K J
2 zaddcl J K J + K
3 1 2 2thd J K J J + K
4 3 adantl M N J K J J + K
5 zre M M
6 zre J J
7 zre K K
8 leadd1 M J K M J M + K J + K
9 5 6 7 8 syl3an M J K M J M + K J + K
10 9 3expb M J K M J M + K J + K
11 10 adantlr M N J K M J M + K J + K
12 zre N N
13 leadd1 J N K J N J + K N + K
14 6 12 7 13 syl3an J N K J N J + K N + K
15 14 3com12 N J K J N J + K N + K
16 15 3expb N J K J N J + K N + K
17 16 adantll M N J K J N J + K N + K
18 4 11 17 3anbi123d M N J K J M J J N J + K M + K J + K J + K N + K
19 elfz1 M N J M N J M J J N
20 19 adantr M N J K J M N J M J J N
21 zaddcl M K M + K
22 zaddcl N K N + K
23 elfz1 M + K N + K J + K M + K N + K J + K M + K J + K J + K N + K
24 21 22 23 syl2an M K N K J + K M + K N + K J + K M + K J + K J + K N + K
25 24 anandirs M N K J + K M + K N + K J + K M + K J + K J + K N + K
26 25 adantrl M N J K J + K M + K N + K J + K M + K J + K J + K N + K
27 18 20 26 3bitr4d M N J K J M N J + K M + K N + K