Metamath Proof Explorer


Theorem fzass4

Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzass4 B A D C B D B A C C A D

Proof

Step Hyp Ref Expression
1 simpll B A D B C B D C B A
2 simprl B A D B C B D C C B
3 1 2 jca B A D B C B D C B A C B
4 uztrn C B B A C A
5 4 ancoms B A C B C A
6 5 ad2ant2r B A D B C B D C C A
7 simprr B A D B C B D C D C
8 3 6 7 jca32 B A D B C B D C B A C B C A D C
9 simpll B A C B C A D C B A
10 uztrn D C C B D B
11 10 ancoms C B D C D B
12 11 ad2ant2l B A C B C A D C D B
13 9 12 jca B A C B C A D C B A D B
14 simplr B A C B C A D C C B
15 simprr B A C B C A D C D C
16 13 14 15 jca32 B A C B C A D C B A D B C B D C
17 8 16 impbii B A D B C B D C B A C B C A D C
18 elfzuzb B A D B A D B
19 elfzuzb C B D C B D C
20 18 19 anbi12i B A D C B D B A D B C B D C
21 elfzuzb B A C B A C B
22 elfzuzb C A D C A D C
23 21 22 anbi12i B A C C A D B A C B C A D C
24 17 20 23 3bitr4i B A D C B D B A C C A D