Metamath Proof Explorer


Theorem fzdif2

Description: Split the last element of a finite set of sequential integers. More generic than fzsuc . (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Assertion fzdif2 N M M N N = M N 1

Proof

Step Hyp Ref Expression
1 fzspl N M M N = M N 1 N
2 1 difeq1d N M M N N = M N 1 N N
3 difun2 M N 1 N N = M N 1 N
4 2 3 eqtrdi N M M N N = M N 1 N
5 eluzelz N M N
6 uzid N N N
7 uznfz N N ¬ N M N 1
8 5 6 7 3syl N M ¬ N M N 1
9 disjsn M N 1 N = ¬ N M N 1
10 8 9 sylibr N M M N 1 N =
11 disjdif2 M N 1 N = M N 1 N = M N 1
12 10 11 syl N M M N 1 N = M N 1
13 4 12 eqtrd N M M N N = M N 1