Metamath Proof Explorer


Theorem fzdifsuc

Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019)

Ref Expression
Assertion fzdifsuc N M M N = M N + 1 N + 1

Proof

Step Hyp Ref Expression
1 fzsuc N M M N + 1 = M N N + 1
2 1 difeq1d N M M N + 1 N + 1 = M N N + 1 N + 1
3 uncom N + 1 M N = M N N + 1
4 ssun2 N + 1 M N N + 1
5 incom N + 1 M N = M N N + 1
6 fzp1disj M N N + 1 =
7 5 6 eqtri N + 1 M N =
8 7 a1i N M N + 1 M N =
9 uneqdifeq N + 1 M N N + 1 N + 1 M N = N + 1 M N = M N N + 1 M N N + 1 N + 1 = M N
10 4 8 9 sylancr N M N + 1 M N = M N N + 1 M N N + 1 N + 1 = M N
11 3 10 mpbii N M M N N + 1 N + 1 = M N
12 2 11 eqtr2d N M M N = M N + 1 N + 1