| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
zre |
|
| 3 |
2
|
ad2antlr |
|
| 4 |
3
|
ltm1d |
|
| 5 |
1 4
|
eqbrtrd |
|
| 6 |
|
simplr |
|
| 7 |
|
eluzelz |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
fzn |
|
| 10 |
6 8 9
|
syl2anc |
|
| 11 |
5 10
|
mpbid |
|
| 12 |
|
difid |
|
| 13 |
12
|
a1i |
|
| 14 |
13
|
eqcomd |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
adantl |
|
| 17 |
2
|
recnd |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
|
1cnd |
|
| 20 |
18 19
|
npcand |
|
| 21 |
16 20
|
eqtrd |
|
| 22 |
21
|
oveq2d |
|
| 23 |
|
fzsn |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
22 24
|
eqtr2d |
|
| 26 |
21
|
eqcomd |
|
| 27 |
26
|
sneqd |
|
| 28 |
25 27
|
difeq12d |
|
| 29 |
11 14 28
|
3eqtrd |
|
| 30 |
|
simplr |
|
| 31 |
7
|
ad2antrr |
|
| 32 |
2
|
ad2antlr |
|
| 33 |
|
1red |
|
| 34 |
32 33
|
resubcld |
|
| 35 |
31
|
zred |
|
| 36 |
|
eluzle |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
neqne |
|
| 39 |
38
|
adantl |
|
| 40 |
34 35 37 39
|
leneltd |
|
| 41 |
|
zlem1lt |
|
| 42 |
30 31 41
|
syl2anc |
|
| 43 |
40 42
|
mpbird |
|
| 44 |
30 31 43
|
3jca |
|
| 45 |
|
eluz2 |
|
| 46 |
44 45
|
sylibr |
|
| 47 |
|
fzdifsuc |
|
| 48 |
46 47
|
syl |
|
| 49 |
29 48
|
pm2.61dan |
|
| 50 |
|
eluzel2 |
|
| 51 |
50
|
con3i |
|
| 52 |
|
fzn0 |
|
| 53 |
51 52
|
sylnibr |
|
| 54 |
|
nne |
|
| 55 |
53 54
|
sylib |
|
| 56 |
|
eluzel2 |
|
| 57 |
56
|
con3i |
|
| 58 |
|
fzn0 |
|
| 59 |
57 58
|
sylnibr |
|
| 60 |
|
nne |
|
| 61 |
59 60
|
sylib |
|
| 62 |
61
|
difeq1d |
|
| 63 |
|
0dif |
|
| 64 |
63
|
a1i |
|
| 65 |
62 64
|
eqtr2d |
|
| 66 |
55 65
|
eqtrd |
|
| 67 |
66
|
adantl |
|
| 68 |
49 67
|
pm2.61dan |
|