Metamath Proof Explorer


Theorem fzdifsuc2

Description: Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc , but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion fzdifsuc2 N M 1 M N = M N + 1 N + 1

Proof

Step Hyp Ref Expression
1 simpr N M 1 M N = M 1 N = M 1
2 zre M M
3 2 ad2antlr N M 1 M N = M 1 M
4 3 ltm1d N M 1 M N = M 1 M 1 < M
5 1 4 eqbrtrd N M 1 M N = M 1 N < M
6 simplr N M 1 M N = M 1 M
7 eluzelz N M 1 N
8 7 ad2antrr N M 1 M N = M 1 N
9 fzn M N N < M M N =
10 6 8 9 syl2anc N M 1 M N = M 1 N < M M N =
11 5 10 mpbid N M 1 M N = M 1 M N =
12 difid M M =
13 12 a1i N M 1 M N = M 1 M M =
14 13 eqcomd N M 1 M N = M 1 = M M
15 oveq1 N = M 1 N + 1 = M - 1 + 1
16 15 adantl N M 1 M N = M 1 N + 1 = M - 1 + 1
17 2 recnd M M
18 17 ad2antlr N M 1 M N = M 1 M
19 1cnd N M 1 M N = M 1 1
20 18 19 npcand N M 1 M N = M 1 M - 1 + 1 = M
21 16 20 eqtrd N M 1 M N = M 1 N + 1 = M
22 21 oveq2d N M 1 M N = M 1 M N + 1 = M M
23 fzsn M M M = M
24 23 ad2antlr N M 1 M N = M 1 M M = M
25 22 24 eqtr2d N M 1 M N = M 1 M = M N + 1
26 21 eqcomd N M 1 M N = M 1 M = N + 1
27 26 sneqd N M 1 M N = M 1 M = N + 1
28 25 27 difeq12d N M 1 M N = M 1 M M = M N + 1 N + 1
29 11 14 28 3eqtrd N M 1 M N = M 1 M N = M N + 1 N + 1
30 simplr N M 1 M ¬ N = M 1 M
31 7 ad2antrr N M 1 M ¬ N = M 1 N
32 2 ad2antlr N M 1 M ¬ N = M 1 M
33 1red N M 1 M ¬ N = M 1 1
34 32 33 resubcld N M 1 M ¬ N = M 1 M 1
35 31 zred N M 1 M ¬ N = M 1 N
36 eluzle N M 1 M 1 N
37 36 ad2antrr N M 1 M ¬ N = M 1 M 1 N
38 neqne ¬ N = M 1 N M 1
39 38 adantl N M 1 M ¬ N = M 1 N M 1
40 34 35 37 39 leneltd N M 1 M ¬ N = M 1 M 1 < N
41 zlem1lt M N M N M 1 < N
42 30 31 41 syl2anc N M 1 M ¬ N = M 1 M N M 1 < N
43 40 42 mpbird N M 1 M ¬ N = M 1 M N
44 30 31 43 3jca N M 1 M ¬ N = M 1 M N M N
45 eluz2 N M M N M N
46 44 45 sylibr N M 1 M ¬ N = M 1 N M
47 fzdifsuc N M M N = M N + 1 N + 1
48 46 47 syl N M 1 M ¬ N = M 1 M N = M N + 1 N + 1
49 29 48 pm2.61dan N M 1 M M N = M N + 1 N + 1
50 eluzel2 N M M
51 50 con3i ¬ M ¬ N M
52 fzn0 M N N M
53 51 52 sylnibr ¬ M ¬ M N
54 nne ¬ M N M N =
55 53 54 sylib ¬ M M N =
56 eluzel2 N + 1 M M
57 56 con3i ¬ M ¬ N + 1 M
58 fzn0 M N + 1 N + 1 M
59 57 58 sylnibr ¬ M ¬ M N + 1
60 nne ¬ M N + 1 M N + 1 =
61 59 60 sylib ¬ M M N + 1 =
62 61 difeq1d ¬ M M N + 1 N + 1 = N + 1
63 0dif N + 1 =
64 63 a1i ¬ M N + 1 =
65 62 64 eqtr2d ¬ M = M N + 1 N + 1
66 55 65 eqtrd ¬ M M N = M N + 1 N + 1
67 66 adantl N M 1 ¬ M M N = M N + 1 N + 1
68 49 67 pm2.61dan N M 1 M N = M N + 1 N + 1