Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
zre |
|
3 |
2
|
ad2antlr |
|
4 |
3
|
ltm1d |
|
5 |
1 4
|
eqbrtrd |
|
6 |
|
simplr |
|
7 |
|
eluzelz |
|
8 |
7
|
ad2antrr |
|
9 |
|
fzn |
|
10 |
6 8 9
|
syl2anc |
|
11 |
5 10
|
mpbid |
|
12 |
|
difid |
|
13 |
12
|
a1i |
|
14 |
13
|
eqcomd |
|
15 |
|
oveq1 |
|
16 |
15
|
adantl |
|
17 |
2
|
recnd |
|
18 |
17
|
ad2antlr |
|
19 |
|
1cnd |
|
20 |
18 19
|
npcand |
|
21 |
16 20
|
eqtrd |
|
22 |
21
|
oveq2d |
|
23 |
|
fzsn |
|
24 |
23
|
ad2antlr |
|
25 |
22 24
|
eqtr2d |
|
26 |
21
|
eqcomd |
|
27 |
26
|
sneqd |
|
28 |
25 27
|
difeq12d |
|
29 |
11 14 28
|
3eqtrd |
|
30 |
|
simplr |
|
31 |
7
|
ad2antrr |
|
32 |
2
|
ad2antlr |
|
33 |
|
1red |
|
34 |
32 33
|
resubcld |
|
35 |
31
|
zred |
|
36 |
|
eluzle |
|
37 |
36
|
ad2antrr |
|
38 |
|
neqne |
|
39 |
38
|
adantl |
|
40 |
34 35 37 39
|
leneltd |
|
41 |
|
zlem1lt |
|
42 |
30 31 41
|
syl2anc |
|
43 |
40 42
|
mpbird |
|
44 |
30 31 43
|
3jca |
|
45 |
|
eluz2 |
|
46 |
44 45
|
sylibr |
|
47 |
|
fzdifsuc |
|
48 |
46 47
|
syl |
|
49 |
29 48
|
pm2.61dan |
|
50 |
|
eluzel2 |
|
51 |
50
|
con3i |
|
52 |
|
fzn0 |
|
53 |
51 52
|
sylnibr |
|
54 |
|
nne |
|
55 |
53 54
|
sylib |
|
56 |
|
eluzel2 |
|
57 |
56
|
con3i |
|
58 |
|
fzn0 |
|
59 |
57 58
|
sylnibr |
|
60 |
|
nne |
|
61 |
59 60
|
sylib |
|
62 |
61
|
difeq1d |
|
63 |
|
0dif |
|
64 |
63
|
a1i |
|
65 |
62 64
|
eqtr2d |
|
66 |
55 65
|
eqtrd |
|
67 |
66
|
adantl |
|
68 |
49 67
|
pm2.61dan |
|