Metamath Proof Explorer


Theorem fzdisj

Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion fzdisj K < M J K M N =

Proof

Step Hyp Ref Expression
1 elin x J K M N x J K x M N
2 elfzel1 x M N M
3 2 adantl x J K x M N M
4 3 zred x J K x M N M
5 elfzel2 x J K K
6 5 adantr x J K x M N K
7 6 zred x J K x M N K
8 elfzelz x M N x
9 8 zred x M N x
10 9 adantl x J K x M N x
11 elfzle1 x M N M x
12 11 adantl x J K x M N M x
13 elfzle2 x J K x K
14 13 adantr x J K x M N x K
15 4 10 7 12 14 letrd x J K x M N M K
16 4 7 15 lensymd x J K x M N ¬ K < M
17 1 16 sylbi x J K M N ¬ K < M
18 17 con2i K < M ¬ x J K M N
19 18 eq0rdv K < M J K M N =