Metamath Proof Explorer


Theorem fzen

Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion fzen M N K M N M + K N + K

Proof

Step Hyp Ref Expression
1 ovexd M N K M N V
2 ovexd M N K M + K N + K V
3 elfz1 M N k M N k M k k N
4 3 biimpd M N k M N k M k k N
5 4 3adant3 M N K k M N k M k k N
6 zaddcl k K k + K
7 6 expcom K k k + K
8 7 3ad2ant3 M N K k k + K
9 8 adantrd M N K k M k k N k + K
10 zre M M
11 zre k k
12 zre K K
13 leadd1 M k K M k M + K k + K
14 10 11 12 13 syl3an M k K M k M + K k + K
15 14 biimpd M k K M k M + K k + K
16 15 adantrd M k K M k k N M + K k + K
17 16 3com23 M K k M k k N M + K k + K
18 17 3expia M K k M k k N M + K k + K
19 18 impd M K k M k k N M + K k + K
20 19 3adant2 M N K k M k k N M + K k + K
21 zre N N
22 leadd1 k N K k N k + K N + K
23 11 21 12 22 syl3an k N K k N k + K N + K
24 23 biimpd k N K k N k + K N + K
25 24 adantld k N K M k k N k + K N + K
26 25 3coml N K k M k k N k + K N + K
27 26 3expia N K k M k k N k + K N + K
28 27 impd N K k M k k N k + K N + K
29 28 3adant1 M N K k M k k N k + K N + K
30 9 20 29 3jcad M N K k M k k N k + K M + K k + K k + K N + K
31 zaddcl M K M + K
32 31 3adant2 M N K M + K
33 zaddcl N K N + K
34 33 3adant1 M N K N + K
35 elfz1 M + K N + K k + K M + K N + K k + K M + K k + K k + K N + K
36 32 34 35 syl2anc M N K k + K M + K N + K k + K M + K k + K k + K N + K
37 36 biimprd M N K k + K M + K k + K k + K N + K k + K M + K N + K
38 30 37 syldc k M k k N M N K k + K M + K N + K
39 38 3impb k M k k N M N K k + K M + K N + K
40 39 com12 M N K k M k k N k + K M + K N + K
41 5 40 syld M N K k M N k + K M + K N + K
42 elfz1 M + K N + K m M + K N + K m M + K m m N + K
43 32 34 42 syl2anc M N K m M + K N + K m M + K m m N + K
44 43 biimpd M N K m M + K N + K m M + K m m N + K
45 zsubcl m K m K
46 45 expcom K m m K
47 46 3ad2ant3 M N K m m K
48 47 adantrd M N K m M + K m m N + K m K
49 zre m m
50 leaddsub M K m M + K m M m K
51 10 12 49 50 syl3an M K m M + K m M m K
52 51 biimpd M K m M + K m M m K
53 52 adantrd M K m M + K m m N + K M m K
54 53 3expia M K m M + K m m N + K M m K
55 54 impd M K m M + K m m N + K M m K
56 55 3adant2 M N K m M + K m m N + K M m K
57 lesubadd m K N m K N m N + K
58 49 12 21 57 syl3an m K N m K N m N + K
59 58 biimprd m K N m N + K m K N
60 59 adantld m K N M + K m m N + K m K N
61 60 3coml K N m M + K m m N + K m K N
62 61 3expia K N m M + K m m N + K m K N
63 62 impd K N m M + K m m N + K m K N
64 63 ancoms N K m M + K m m N + K m K N
65 64 3adant1 M N K m M + K m m N + K m K N
66 48 56 65 3jcad M N K m M + K m m N + K m K M m K m K N
67 elfz1 M N m K M N m K M m K m K N
68 67 biimprd M N m K M m K m K N m K M N
69 68 3adant3 M N K m K M m K m K N m K M N
70 66 69 syldc m M + K m m N + K M N K m K M N
71 70 3impb m M + K m m N + K M N K m K M N
72 71 com12 M N K m M + K m m N + K m K M N
73 44 72 syld M N K m M + K N + K m K M N
74 5 imp M N K k M N k M k k N
75 74 simp1d M N K k M N k
76 75 ex M N K k M N k
77 44 imp M N K m M + K N + K m M + K m m N + K
78 77 simp1d M N K m M + K N + K m
79 78 ex M N K m M + K N + K m
80 zcn m m
81 zcn K K
82 zcn k k
83 subadd m K k m K = k K + k = m
84 eqcom m K = k k = m K
85 eqcom K + k = m m = K + k
86 83 84 85 3bitr3g m K k k = m K m = K + k
87 addcom K k K + k = k + K
88 87 3adant1 m K k K + k = k + K
89 88 eqeq2d m K k m = K + k m = k + K
90 86 89 bitrd m K k k = m K m = k + K
91 80 81 82 90 syl3an m K k k = m K m = k + K
92 91 3coml K k m k = m K m = k + K
93 92 3expib K k m k = m K m = k + K
94 93 3ad2ant3 M N K k m k = m K m = k + K
95 76 79 94 syl2and M N K k M N m M + K N + K k = m K m = k + K
96 1 2 41 73 95 en3d M N K M N M + K N + K