Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
|
2 |
|
ovexd |
|
3 |
|
elfz1 |
|
4 |
3
|
biimpd |
|
5 |
4
|
3adant3 |
|
6 |
|
zaddcl |
|
7 |
6
|
expcom |
|
8 |
7
|
3ad2ant3 |
|
9 |
8
|
adantrd |
|
10 |
|
zre |
|
11 |
|
zre |
|
12 |
|
zre |
|
13 |
|
leadd1 |
|
14 |
10 11 12 13
|
syl3an |
|
15 |
14
|
biimpd |
|
16 |
15
|
adantrd |
|
17 |
16
|
3com23 |
|
18 |
17
|
3expia |
|
19 |
18
|
impd |
|
20 |
19
|
3adant2 |
|
21 |
|
zre |
|
22 |
|
leadd1 |
|
23 |
11 21 12 22
|
syl3an |
|
24 |
23
|
biimpd |
|
25 |
24
|
adantld |
|
26 |
25
|
3coml |
|
27 |
26
|
3expia |
|
28 |
27
|
impd |
|
29 |
28
|
3adant1 |
|
30 |
9 20 29
|
3jcad |
|
31 |
|
zaddcl |
|
32 |
31
|
3adant2 |
|
33 |
|
zaddcl |
|
34 |
33
|
3adant1 |
|
35 |
|
elfz1 |
|
36 |
32 34 35
|
syl2anc |
|
37 |
36
|
biimprd |
|
38 |
30 37
|
syldc |
|
39 |
38
|
3impb |
|
40 |
39
|
com12 |
|
41 |
5 40
|
syld |
|
42 |
|
elfz1 |
|
43 |
32 34 42
|
syl2anc |
|
44 |
43
|
biimpd |
|
45 |
|
zsubcl |
|
46 |
45
|
expcom |
|
47 |
46
|
3ad2ant3 |
|
48 |
47
|
adantrd |
|
49 |
|
zre |
|
50 |
|
leaddsub |
|
51 |
10 12 49 50
|
syl3an |
|
52 |
51
|
biimpd |
|
53 |
52
|
adantrd |
|
54 |
53
|
3expia |
|
55 |
54
|
impd |
|
56 |
55
|
3adant2 |
|
57 |
|
lesubadd |
|
58 |
49 12 21 57
|
syl3an |
|
59 |
58
|
biimprd |
|
60 |
59
|
adantld |
|
61 |
60
|
3coml |
|
62 |
61
|
3expia |
|
63 |
62
|
impd |
|
64 |
63
|
ancoms |
|
65 |
64
|
3adant1 |
|
66 |
48 56 65
|
3jcad |
|
67 |
|
elfz1 |
|
68 |
67
|
biimprd |
|
69 |
68
|
3adant3 |
|
70 |
66 69
|
syldc |
|
71 |
70
|
3impb |
|
72 |
71
|
com12 |
|
73 |
44 72
|
syld |
|
74 |
5
|
imp |
|
75 |
74
|
simp1d |
|
76 |
75
|
ex |
|
77 |
44
|
imp |
|
78 |
77
|
simp1d |
|
79 |
78
|
ex |
|
80 |
|
zcn |
|
81 |
|
zcn |
|
82 |
|
zcn |
|
83 |
|
subadd |
|
84 |
|
eqcom |
|
85 |
|
eqcom |
|
86 |
83 84 85
|
3bitr3g |
|
87 |
|
addcom |
|
88 |
87
|
3adant1 |
|
89 |
88
|
eqeq2d |
|
90 |
86 89
|
bitrd |
|
91 |
80 81 82 90
|
syl3an |
|
92 |
91
|
3coml |
|
93 |
92
|
3expib |
|
94 |
93
|
3ad2ant3 |
|
95 |
76 79 94
|
syl2and |
|
96 |
1 2 41 73 95
|
en3d |
|