Step |
Hyp |
Ref |
Expression |
1 |
|
fzennn.1 |
|
2 |
|
oveq2 |
|
3 |
|
fveq2 |
|
4 |
2 3
|
breq12d |
|
5 |
|
oveq2 |
|
6 |
|
fveq2 |
|
7 |
5 6
|
breq12d |
|
8 |
|
oveq2 |
|
9 |
|
fveq2 |
|
10 |
8 9
|
breq12d |
|
11 |
|
oveq2 |
|
12 |
|
fveq2 |
|
13 |
11 12
|
breq12d |
|
14 |
|
0ex |
|
15 |
14
|
enref |
|
16 |
|
fz10 |
|
17 |
|
0z |
|
18 |
17 1
|
om2uzf1oi |
|
19 |
|
peano1 |
|
20 |
18 19
|
pm3.2i |
|
21 |
17 1
|
om2uz0i |
|
22 |
|
f1ocnvfv |
|
23 |
20 21 22
|
mp2 |
|
24 |
15 16 23
|
3brtr4i |
|
25 |
|
simpr |
|
26 |
|
ovex |
|
27 |
|
fvex |
|
28 |
|
en2sn |
|
29 |
26 27 28
|
mp2an |
|
30 |
29
|
a1i |
|
31 |
|
fzp1disj |
|
32 |
31
|
a1i |
|
33 |
|
f1ocnvdm |
|
34 |
18 33
|
mpan |
|
35 |
|
nn0uz |
|
36 |
34 35
|
eleq2s |
|
37 |
|
nnord |
|
38 |
|
ordirr |
|
39 |
36 37 38
|
3syl |
|
40 |
39
|
adantr |
|
41 |
|
disjsn |
|
42 |
40 41
|
sylibr |
|
43 |
|
unen |
|
44 |
25 30 32 42 43
|
syl22anc |
|
45 |
|
1z |
|
46 |
|
1m1e0 |
|
47 |
46
|
fveq2i |
|
48 |
35 47
|
eqtr4i |
|
49 |
48
|
eleq2i |
|
50 |
49
|
biimpi |
|
51 |
|
fzsuc2 |
|
52 |
45 50 51
|
sylancr |
|
53 |
52
|
adantr |
|
54 |
|
peano2 |
|
55 |
36 54
|
syl |
|
56 |
55 18
|
jctil |
|
57 |
17 1
|
om2uzsuci |
|
58 |
36 57
|
syl |
|
59 |
35
|
eleq2i |
|
60 |
59
|
biimpi |
|
61 |
|
f1ocnvfv2 |
|
62 |
18 60 61
|
sylancr |
|
63 |
62
|
oveq1d |
|
64 |
58 63
|
eqtrd |
|
65 |
|
f1ocnvfv |
|
66 |
56 64 65
|
sylc |
|
67 |
66
|
adantr |
|
68 |
|
df-suc |
|
69 |
67 68
|
eqtrdi |
|
70 |
44 53 69
|
3brtr4d |
|
71 |
70
|
ex |
|
72 |
4 7 10 13 24 71
|
nn0ind |
|