Metamath Proof Explorer


Theorem fzf

Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion fzf : × 𝒫

Proof

Step Hyp Ref Expression
1 zex V
2 ssrab2 k | m k k n
3 1 2 elpwi2 k | m k k n 𝒫
4 3 rgen2w m n k | m k k n 𝒫
5 df-fz = m , n k | m k k n
6 5 fmpo m n k | m k k n 𝒫 : × 𝒫
7 4 6 mpbi : × 𝒫