Metamath Proof Explorer


Theorem fzfi

Description: A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Mar-2015)

Ref Expression
Assertion fzfi M N Fin

Proof

Step Hyp Ref Expression
1 0fin Fin
2 eleq1 M N = M N Fin Fin
3 1 2 mpbiri M N = M N Fin
4 fzn0 M N N M
5 onfin2 ω = On Fin
6 inss2 On Fin Fin
7 5 6 eqsstri ω Fin
8 eqid rec x V x + 1 0 ω = rec x V x + 1 0 ω
9 8 hashgf1o rec x V x + 1 0 ω : ω 1-1 onto 0
10 peano2uz N M N + 1 M
11 uznn0sub N + 1 M N + 1 - M 0
12 10 11 syl N M N + 1 - M 0
13 f1ocnvdm rec x V x + 1 0 ω : ω 1-1 onto 0 N + 1 - M 0 rec x V x + 1 0 ω -1 N + 1 - M ω
14 9 12 13 sylancr N M rec x V x + 1 0 ω -1 N + 1 - M ω
15 7 14 sselid N M rec x V x + 1 0 ω -1 N + 1 - M Fin
16 8 fzen2 N M M N rec x V x + 1 0 ω -1 N + 1 - M
17 enfii rec x V x + 1 0 ω -1 N + 1 - M Fin M N rec x V x + 1 0 ω -1 N + 1 - M M N Fin
18 15 16 17 syl2anc N M M N Fin
19 4 18 sylbi M N M N Fin
20 3 19 pm2.61ine M N Fin