Metamath Proof Explorer


Theorem fzisfzounsn

Description: A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018)

Ref Expression
Assertion fzisfzounsn B A A B = A ..^ B B

Proof

Step Hyp Ref Expression
1 eluzelz B A B
2 fzval3 B A B = A ..^ B + 1
3 1 2 syl B A A B = A ..^ B + 1
4 fzosplitsn B A A ..^ B + 1 = A ..^ B B
5 3 4 eqtrd B A A B = A ..^ B B