Metamath Proof Explorer


Theorem fzm1ndvds

Description: No number between 1 and M - 1 divides M . (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Assertion fzm1ndvds M N 1 M 1 ¬ M N

Proof

Step Hyp Ref Expression
1 elfzle2 N 1 M 1 N M 1
2 1 adantl M N 1 M 1 N M 1
3 elfzelz N 1 M 1 N
4 3 adantl M N 1 M 1 N
5 nnz M M
6 5 adantr M N 1 M 1 M
7 zltlem1 N M N < M N M 1
8 4 6 7 syl2anc M N 1 M 1 N < M N M 1
9 2 8 mpbird M N 1 M 1 N < M
10 elfznn N 1 M 1 N
11 10 adantl M N 1 M 1 N
12 11 nnred M N 1 M 1 N
13 nnre M M
14 13 adantr M N 1 M 1 M
15 12 14 ltnled M N 1 M 1 N < M ¬ M N
16 9 15 mpbid M N 1 M 1 ¬ M N
17 dvdsle M N M N M N
18 6 11 17 syl2anc M N 1 M 1 M N M N
19 16 18 mtod M N 1 M 1 ¬ M N