Metamath Proof Explorer


Theorem fzm1ne1

Description: Elementhood of an integer and its predecessor in finite intervals of integers. (Contributed by Thierry Arnoux, 1-Jan-2024)

Ref Expression
Assertion fzm1ne1 K M N K M K 1 M N 1

Proof

Step Hyp Ref Expression
1 fzne1 K M N K M K M + 1 N
2 elfzel1 K M + 1 N M + 1
3 elfzel2 K M + 1 N N
4 elfzelz K M + 1 N K
5 1zzd K M + 1 N 1
6 id K M + 1 N K M + 1 N
7 fzsubel M + 1 N K 1 K M + 1 N K 1 M + 1 - 1 N 1
8 7 biimp3a M + 1 N K 1 K M + 1 N K 1 M + 1 - 1 N 1
9 2 3 4 5 6 8 syl221anc K M + 1 N K 1 M + 1 - 1 N 1
10 1 9 syl K M N K M K 1 M + 1 - 1 N 1
11 elfzel1 K M N M
12 11 adantr K M N K M M
13 12 zcnd K M N K M M
14 1cnd K M N K M 1
15 13 14 pncand K M N K M M + 1 - 1 = M
16 15 oveq1d K M N K M M + 1 - 1 N 1 = M N 1
17 10 16 eleqtrd K M N K M K 1 M N 1