Metamath Proof Explorer


Theorem fzn

Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005)

Ref Expression
Assertion fzn M N N < M M N =

Proof

Step Hyp Ref Expression
1 fzn0 M N N M
2 eluz M N N M M N
3 1 2 syl5bb M N M N M N
4 zre M M
5 zre N N
6 lenlt M N M N ¬ N < M
7 4 5 6 syl2an M N M N ¬ N < M
8 3 7 bitr2d M N ¬ N < M M N
9 8 necon4bbid M N N < M M N =