Metamath Proof Explorer


Theorem fzn0

Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzn0 M N N M

Proof

Step Hyp Ref Expression
1 n0 M N x x M N
2 elfzuz2 x M N N M
3 2 exlimiv x x M N N M
4 1 3 sylbi M N N M
5 eluzfz1 N M M M N
6 5 ne0d N M M N
7 4 6 impbii M N N M