Metamath Proof Explorer


Theorem fznatpl1

Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013)

Ref Expression
Assertion fznatpl1 N I 1 N 1 I + 1 1 N

Proof

Step Hyp Ref Expression
1 1red N I 1 N 1 1
2 elfzelz I 1 N 1 I
3 2 zred I 1 N 1 I
4 3 adantl N I 1 N 1 I
5 peano2re I I + 1
6 4 5 syl N I 1 N 1 I + 1
7 peano2re 1 1 + 1
8 1 7 syl N I 1 N 1 1 + 1
9 1 ltp1d N I 1 N 1 1 < 1 + 1
10 elfzle1 I 1 N 1 1 I
11 10 adantl N I 1 N 1 1 I
12 1re 1
13 leadd1 1 I 1 1 I 1 + 1 I + 1
14 12 12 13 mp3an13 I 1 I 1 + 1 I + 1
15 4 14 syl N I 1 N 1 1 I 1 + 1 I + 1
16 11 15 mpbid N I 1 N 1 1 + 1 I + 1
17 1 8 6 9 16 ltletrd N I 1 N 1 1 < I + 1
18 1 6 17 ltled N I 1 N 1 1 I + 1
19 elfzle2 I 1 N 1 I N 1
20 19 adantl N I 1 N 1 I N 1
21 nnz N N
22 21 adantr N I 1 N 1 N
23 22 zred N I 1 N 1 N
24 leaddsub I 1 N I + 1 N I N 1
25 12 24 mp3an2 I N I + 1 N I N 1
26 3 23 25 syl2an2 N I 1 N 1 I + 1 N I N 1
27 20 26 mpbird N I 1 N 1 I + 1 N
28 2 peano2zd I 1 N 1 I + 1
29 1z 1
30 elfz I + 1 1 N I + 1 1 N 1 I + 1 I + 1 N
31 29 30 mp3an2 I + 1 N I + 1 1 N 1 I + 1 I + 1 N
32 28 22 31 syl2an2 N I 1 N 1 I + 1 1 N 1 I + 1 I + 1 N
33 18 27 32 mpbir2and N I 1 N 1 I + 1 1 N