Metamath Proof Explorer


Theorem fzneg

Description: Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion fzneg A B C A B C A C B

Proof

Step Hyp Ref Expression
1 ancom B A A C A C B A
2 zre A A
3 2 3ad2ant1 A B C A
4 zre C C
5 4 3ad2ant3 A B C C
6 3 5 lenegd A B C A C C A
7 zre B B
8 7 3ad2ant2 A B C B
9 8 3 lenegd A B C B A A B
10 6 9 anbi12d A B C A C B A C A A B
11 1 10 syl5bb A B C B A A C C A A B
12 elfz A B C A B C B A A C
13 znegcl A A
14 znegcl C C
15 znegcl B B
16 elfz A C B A C B C A A B
17 13 14 15 16 syl3an A C B A C B C A A B
18 17 3com23 A B C A C B C A A B
19 11 12 18 3bitr4d A B C A B C A C B