Metamath Proof Explorer


Theorem fzneuz

Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005)

Ref Expression
Assertion fzneuz N M K ¬ M N = K

Proof

Step Hyp Ref Expression
1 peano2uz N K N + 1 K
2 eluzelre N M N
3 ltp1 N N < N + 1
4 peano2re N N + 1
5 ltnle N N + 1 N < N + 1 ¬ N + 1 N
6 4 5 mpdan N N < N + 1 ¬ N + 1 N
7 3 6 mpbid N ¬ N + 1 N
8 2 7 syl N M ¬ N + 1 N
9 elfzle2 N + 1 M N N + 1 N
10 8 9 nsyl N M ¬ N + 1 M N
11 10 ad2antrr N M K N K ¬ N + 1 M N
12 nelneq2 N + 1 K ¬ N + 1 M N ¬ K = M N
13 1 11 12 syl2an2 N M K N K ¬ K = M N
14 eqcom K = M N M N = K
15 13 14 sylnib N M K N K ¬ M N = K
16 eluzfz2 N M N M N
17 16 ad2antrr N M K ¬ N K N M N
18 nelneq2 N M N ¬ N K ¬ M N = K
19 17 18 sylancom N M K ¬ N K ¬ M N = K
20 15 19 pm2.61dan N M K ¬ M N = K