Metamath Proof Explorer


Theorem fznn0sub2

Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fznn0sub2 K 0 N N K 0 N

Proof

Step Hyp Ref Expression
1 elfzle1 K 0 N 0 K
2 elfzel2 K 0 N N
3 elfzelz K 0 N K
4 zre N N
5 zre K K
6 subge02 N K 0 K N K N
7 4 5 6 syl2an N K 0 K N K N
8 2 3 7 syl2anc K 0 N 0 K N K N
9 1 8 mpbid K 0 N N K N
10 fznn0sub K 0 N N K 0
11 nn0uz 0 = 0
12 10 11 eleqtrdi K 0 N N K 0
13 elfz5 N K 0 N N K 0 N N K N
14 12 2 13 syl2anc K 0 N N K 0 N N K N
15 9 14 mpbird K 0 N N K 0 N