Metamath Proof Explorer


Theorem fzo01

Description: Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzo01 0 ..^ 1 = 0

Proof

Step Hyp Ref Expression
1 1e0p1 1 = 0 + 1
2 1 oveq2i 0 ..^ 1 = 0 ..^ 0 + 1
3 0z 0
4 fzosn 0 0 ..^ 0 + 1 = 0
5 3 4 ax-mp 0 ..^ 0 + 1 = 0
6 2 5 eqtri 0 ..^ 1 = 0