Metamath Proof Explorer


Theorem fzo0addel

Description: Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020)

Ref Expression
Assertion fzo0addel A 0 ..^ C D A + D D ..^ C + D

Proof

Step Hyp Ref Expression
1 fzoaddel A 0 ..^ C D A + D 0 + D ..^ C + D
2 zcn D D
3 addid2 D 0 + D = D
4 3 eqcomd D D = 0 + D
5 2 4 syl D D = 0 + D
6 5 adantl A 0 ..^ C D D = 0 + D
7 6 oveq1d A 0 ..^ C D D ..^ C + D = 0 + D ..^ C + D
8 1 7 eleqtrrd A 0 ..^ C D A + D D ..^ C + D