Metamath Proof Explorer


Theorem fzo0addelr

Description: Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020)

Ref Expression
Assertion fzo0addelr A 0 ..^ C D A + D D ..^ D + C

Proof

Step Hyp Ref Expression
1 fzo0addel A 0 ..^ C D A + D D ..^ C + D
2 zcn D D
3 elfzoel2 A 0 ..^ C C
4 3 zcnd A 0 ..^ C C
5 addcom D C D + C = C + D
6 2 4 5 syl2anr A 0 ..^ C D D + C = C + D
7 6 oveq2d A 0 ..^ C D D ..^ D + C = D ..^ C + D
8 1 7 eleqtrrd A 0 ..^ C D A + D D ..^ D + C