Metamath Proof Explorer


Theorem fzo0dvdseq

Description: Zero is the only one of the first A nonnegative integers that is divisible by A . (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion fzo0dvdseq B 0 ..^ A A B B = 0

Proof

Step Hyp Ref Expression
1 elfzolt2 B 0 ..^ A B < A
2 elfzoelz B 0 ..^ A B
3 2 zred B 0 ..^ A B
4 elfzoel2 B 0 ..^ A A
5 4 zred B 0 ..^ A A
6 3 5 ltnled B 0 ..^ A B < A ¬ A B
7 1 6 mpbid B 0 ..^ A ¬ A B
8 7 adantr B 0 ..^ A B 0 ¬ A B
9 elfzonn0 B 0 ..^ A B 0
10 9 adantr B 0 ..^ A B 0 B 0
11 simpr B 0 ..^ A B 0 B 0
12 eldifsn B 0 0 B 0 B 0
13 10 11 12 sylanbrc B 0 ..^ A B 0 B 0 0
14 dfn2 = 0 0
15 13 14 eleqtrrdi B 0 ..^ A B 0 B
16 dvdsle A B A B A B
17 4 15 16 syl2an2r B 0 ..^ A B 0 A B A B
18 8 17 mtod B 0 ..^ A B 0 ¬ A B
19 18 ex B 0 ..^ A B 0 ¬ A B
20 19 necon4ad B 0 ..^ A A B B = 0
21 dvds0 A A 0
22 4 21 syl B 0 ..^ A A 0
23 breq2 B = 0 A B A 0
24 22 23 syl5ibrcom B 0 ..^ A B = 0 A B
25 20 24 impbid B 0 ..^ A A B B = 0