Metamath Proof Explorer


Theorem fzo0n

Description: A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion fzo0n M N N M 0 ..^ N M =

Proof

Step Hyp Ref Expression
1 zre N N
2 zre M M
3 suble0 N M N M 0 N M
4 1 2 3 syl2an N M N M 0 N M
5 0z 0
6 zsubcl N M N M
7 fzon 0 N M N M 0 0 ..^ N M =
8 5 6 7 sylancr N M N M 0 0 ..^ N M =
9 4 8 bitr3d N M N M 0 ..^ N M =
10 9 ancoms M N N M 0 ..^ N M =