Metamath Proof Explorer


Theorem fzo0to2pr

Description: A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fzo0to2pr 0 ..^ 2 = 0 1

Proof

Step Hyp Ref Expression
1 2z 2
2 fzoval 2 0 ..^ 2 = 0 2 1
3 1 2 ax-mp 0 ..^ 2 = 0 2 1
4 2m1e1 2 1 = 1
5 0p1e1 0 + 1 = 1
6 4 5 eqtr4i 2 1 = 0 + 1
7 6 oveq2i 0 2 1 = 0 0 + 1
8 0z 0
9 fzpr 0 0 0 + 1 = 0 0 + 1
10 5 preq2i 0 0 + 1 = 0 1
11 9 10 eqtrdi 0 0 0 + 1 = 0 1
12 8 11 ax-mp 0 0 + 1 = 0 1
13 3 7 12 3eqtri 0 ..^ 2 = 0 1