Metamath Proof Explorer


Theorem fzo0to3tp

Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017)

Ref Expression
Assertion fzo0to3tp 0 ..^ 3 = 0 1 2

Proof

Step Hyp Ref Expression
1 3z 3
2 fzoval 3 0 ..^ 3 = 0 3 1
3 1 2 ax-mp 0 ..^ 3 = 0 3 1
4 3m1e2 3 1 = 2
5 2cn 2
6 5 addid2i 0 + 2 = 2
7 4 6 eqtr4i 3 1 = 0 + 2
8 7 oveq2i 0 3 1 = 0 0 + 2
9 0z 0
10 fztp 0 0 0 + 2 = 0 0 + 1 0 + 2
11 eqidd 0 0 = 0
12 0p1e1 0 + 1 = 1
13 12 a1i 0 0 + 1 = 1
14 6 a1i 0 0 + 2 = 2
15 11 13 14 tpeq123d 0 0 0 + 1 0 + 2 = 0 1 2
16 10 15 eqtrd 0 0 0 + 2 = 0 1 2
17 9 16 ax-mp 0 0 + 2 = 0 1 2
18 3 8 17 3eqtri 0 ..^ 3 = 0 1 2