Metamath Proof Explorer


Theorem fzo0to42pr

Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017)

Ref Expression
Assertion fzo0to42pr 0 ..^ 4 = 0 1 2 3

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 4nn0 4 0
3 2re 2
4 4re 4
5 2lt4 2 < 4
6 3 4 5 ltleii 2 4
7 elfz2nn0 2 0 4 2 0 4 0 2 4
8 1 2 6 7 mpbir3an 2 0 4
9 fzosplit 2 0 4 0 ..^ 4 = 0 ..^ 2 2 ..^ 4
10 8 9 ax-mp 0 ..^ 4 = 0 ..^ 2 2 ..^ 4
11 fzo0to2pr 0 ..^ 2 = 0 1
12 4z 4
13 fzoval 4 2 ..^ 4 = 2 4 1
14 12 13 ax-mp 2 ..^ 4 = 2 4 1
15 4m1e3 4 1 = 3
16 df-3 3 = 2 + 1
17 15 16 eqtri 4 1 = 2 + 1
18 17 oveq2i 2 4 1 = 2 2 + 1
19 2z 2
20 fzpr 2 2 2 + 1 = 2 2 + 1
21 19 20 ax-mp 2 2 + 1 = 2 2 + 1
22 18 21 eqtri 2 4 1 = 2 2 + 1
23 2p1e3 2 + 1 = 3
24 23 preq2i 2 2 + 1 = 2 3
25 14 22 24 3eqtri 2 ..^ 4 = 2 3
26 11 25 uneq12i 0 ..^ 2 2 ..^ 4 = 0 1 2 3
27 10 26 eqtri 0 ..^ 4 = 0 1 2 3