Metamath Proof Explorer


Theorem fzo1fzo0n0

Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018)

Ref Expression
Assertion fzo1fzo0n0 K 1 ..^ N K 0 ..^ N K 0

Proof

Step Hyp Ref Expression
1 elfzo2 K 1 ..^ N K 1 N K < N
2 elnnuz K K 1
3 nnnn0 K K 0
4 3 adantr K N K 0
5 4 adantr K N K < N K 0
6 nngt0 K 0 < K
7 0red N K 0
8 nnre K K
9 8 adantl N K K
10 zre N N
11 10 adantr N K N
12 lttr 0 K N 0 < K K < N 0 < N
13 7 9 11 12 syl3anc N K 0 < K K < N 0 < N
14 elnnz N N 0 < N
15 14 simplbi2 N 0 < N N
16 15 adantr N K 0 < N N
17 13 16 syld N K 0 < K K < N N
18 17 exp4b N K 0 < K K < N N
19 18 com13 0 < K K N K < N N
20 6 19 mpcom K N K < N N
21 20 imp31 K N K < N N
22 simpr K N K < N K < N
23 5 21 22 3jca K N K < N K 0 N K < N
24 23 exp31 K N K < N K 0 N K < N
25 2 24 sylbir K 1 N K < N K 0 N K < N
26 25 3imp K 1 N K < N K 0 N K < N
27 elfzo0 K 0 ..^ N K 0 N K < N
28 26 27 sylibr K 1 N K < N K 0 ..^ N
29 nnne0 K K 0
30 2 29 sylbir K 1 K 0
31 30 3ad2ant1 K 1 N K < N K 0
32 28 31 jca K 1 N K < N K 0 ..^ N K 0
33 1 32 sylbi K 1 ..^ N K 0 ..^ N K 0
34 elnnne0 K K 0 K 0
35 nnge1 K 1 K
36 34 35 sylbir K 0 K 0 1 K
37 36 3ad2antl1 K 0 N K < N K 0 1 K
38 simpl3 K 0 N K < N K 0 K < N
39 nn0z K 0 K
40 39 adantr K 0 N K
41 1zzd K 0 N 1
42 nnz N N
43 42 adantl K 0 N N
44 40 41 43 3jca K 0 N K 1 N
45 44 3adant3 K 0 N K < N K 1 N
46 45 adantr K 0 N K < N K 0 K 1 N
47 elfzo K 1 N K 1 ..^ N 1 K K < N
48 46 47 syl K 0 N K < N K 0 K 1 ..^ N 1 K K < N
49 37 38 48 mpbir2and K 0 N K < N K 0 K 1 ..^ N
50 27 49 sylanb K 0 ..^ N K 0 K 1 ..^ N
51 33 50 impbii K 1 ..^ N K 0 ..^ N K 0