| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzo2 |
|
| 2 |
|
elnnuz |
|
| 3 |
|
nnnn0 |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
adantr |
|
| 6 |
|
nngt0 |
|
| 7 |
|
0red |
|
| 8 |
|
nnre |
|
| 9 |
8
|
adantl |
|
| 10 |
|
zre |
|
| 11 |
10
|
adantr |
|
| 12 |
|
lttr |
|
| 13 |
7 9 11 12
|
syl3anc |
|
| 14 |
|
elnnz |
|
| 15 |
14
|
simplbi2 |
|
| 16 |
15
|
adantr |
|
| 17 |
13 16
|
syld |
|
| 18 |
17
|
exp4b |
|
| 19 |
18
|
com13 |
|
| 20 |
6 19
|
mpcom |
|
| 21 |
20
|
imp31 |
|
| 22 |
|
simpr |
|
| 23 |
5 21 22
|
3jca |
|
| 24 |
23
|
exp31 |
|
| 25 |
2 24
|
sylbir |
|
| 26 |
25
|
3imp |
|
| 27 |
|
elfzo0 |
|
| 28 |
26 27
|
sylibr |
|
| 29 |
|
nnne0 |
|
| 30 |
2 29
|
sylbir |
|
| 31 |
30
|
3ad2ant1 |
|
| 32 |
28 31
|
jca |
|
| 33 |
1 32
|
sylbi |
|
| 34 |
|
elnnne0 |
|
| 35 |
|
nnge1 |
|
| 36 |
34 35
|
sylbir |
|
| 37 |
36
|
3ad2antl1 |
|
| 38 |
|
simpl3 |
|
| 39 |
|
nn0z |
|
| 40 |
39
|
adantr |
|
| 41 |
|
1zzd |
|
| 42 |
|
nnz |
|
| 43 |
42
|
adantl |
|
| 44 |
40 41 43
|
3jca |
|
| 45 |
44
|
3adant3 |
|
| 46 |
45
|
adantr |
|
| 47 |
|
elfzo |
|
| 48 |
46 47
|
syl |
|
| 49 |
37 38 48
|
mpbir2and |
|
| 50 |
27 49
|
sylanb |
|
| 51 |
33 50
|
impbii |
|