Metamath Proof Explorer


Theorem fzo1to4tp

Description: A half-open integer range from 1 to 4 is an unordered triple. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion fzo1to4tp 1 ..^ 4 = 1 2 3

Proof

Step Hyp Ref Expression
1 4z 4
2 fzoval 4 1 ..^ 4 = 1 4 1
3 1 2 ax-mp 1 ..^ 4 = 1 4 1
4 4m1e3 4 1 = 3
5 df-3 3 = 2 + 1
6 2cn 2
7 ax-1cn 1
8 6 7 addcomi 2 + 1 = 1 + 2
9 4 5 8 3eqtri 4 1 = 1 + 2
10 9 oveq2i 1 4 1 = 1 1 + 2
11 1z 1
12 fztp 1 1 1 + 2 = 1 1 + 1 1 + 2
13 eqidd 1 1 = 1
14 1p1e2 1 + 1 = 2
15 14 a1i 1 1 + 1 = 2
16 1p2e3 1 + 2 = 3
17 16 a1i 1 1 + 2 = 3
18 13 15 17 tpeq123d 1 1 1 + 1 1 + 2 = 1 2 3
19 12 18 eqtrd 1 1 1 + 2 = 1 2 3
20 11 19 ax-mp 1 1 + 2 = 1 2 3
21 3 10 20 3eqtri 1 ..^ 4 = 1 2 3