Metamath Proof Explorer


Theorem fzoaddel2

Description: Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzoaddel2 A 0 ..^ B C B C A + C C ..^ B

Proof

Step Hyp Ref Expression
1 fzoaddel A 0 ..^ B C C A + C 0 + C ..^ B - C + C
2 1 3adant2 A 0 ..^ B C B C A + C 0 + C ..^ B - C + C
3 zcn B B
4 zcn C C
5 addid2 C 0 + C = C
6 5 adantl B C 0 + C = C
7 npcan B C B - C + C = B
8 6 7 oveq12d B C 0 + C ..^ B - C + C = C ..^ B
9 3 4 8 syl2an B C 0 + C ..^ B - C + C = C ..^ B
10 9 3adant1 A 0 ..^ B C B C 0 + C ..^ B - C + C = C ..^ B
11 2 10 eleqtrd A 0 ..^ B C B C A + C C ..^ B