Metamath Proof Explorer


Theorem fzocatel

Description: Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018)

Ref Expression
Assertion fzocatel A 0 ..^ B + C ¬ A 0 ..^ B B C A B 0 ..^ C

Proof

Step Hyp Ref Expression
1 simplr A 0 ..^ B + C ¬ A 0 ..^ B B C ¬ A 0 ..^ B
2 fzospliti A 0 ..^ B + C B A 0 ..^ B A B ..^ B + C
3 2 ad2ant2r A 0 ..^ B + C ¬ A 0 ..^ B B C A 0 ..^ B A B ..^ B + C
4 3 ord A 0 ..^ B + C ¬ A 0 ..^ B B C ¬ A 0 ..^ B A B ..^ B + C
5 1 4 mpd A 0 ..^ B + C ¬ A 0 ..^ B B C A B ..^ B + C
6 simprl A 0 ..^ B + C ¬ A 0 ..^ B B C B
7 fzosubel A B ..^ B + C B A B B B ..^ B + C - B
8 5 6 7 syl2anc A 0 ..^ B + C ¬ A 0 ..^ B B C A B B B ..^ B + C - B
9 zcn B B
10 9 subidd B B B = 0
11 6 10 syl A 0 ..^ B + C ¬ A 0 ..^ B B C B B = 0
12 6 zcnd A 0 ..^ B + C ¬ A 0 ..^ B B C B
13 simprr A 0 ..^ B + C ¬ A 0 ..^ B B C C
14 13 zcnd A 0 ..^ B + C ¬ A 0 ..^ B B C C
15 12 14 pncan2d A 0 ..^ B + C ¬ A 0 ..^ B B C B + C - B = C
16 11 15 oveq12d A 0 ..^ B + C ¬ A 0 ..^ B B C B B ..^ B + C - B = 0 ..^ C
17 8 16 eleqtrd A 0 ..^ B + C ¬ A 0 ..^ B B C A B 0 ..^ C